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Abstract 

Thermal modelling of buildings typically involves the use of software programs that are highly accurate but 

complex.  As such many users do not have a good “feel” for how heat flows in and out of a building.  The simplest 

type of manual calculation method is a steady state model which allows some insight into the flow of heat in a 

building.  However modelling of thermal storage in building elements with mass is seen to be too difficult to be 

solved readily and as such complex thermal software programs are utilised.  In the late 1960s and early 1970s the 

admittance method was developed which calculated quite accurately the thermal response of building elements with 

mass.  Typically the thermal response of a building to 24 hour cyclic inputs - temperatures and solar radiation – was 

calculated.  This sort of calculation was also extended to higher frequencies utilising a more accurate Fourier series 

representation of temperatures and solar radiation.  However this approach was soon overtaken by more complex 

computer based models which delivered greater modelling complexity and accuracy but tended to obscure the 

underlying physical processes.  This paper re-examines the admittance/Fourier method as a pathway to enhancing 

understanding of the response of buildings to fluctuating temperatures and solar radiation.  A simplified 

representation of yearly ambient temperature in terms of only three terms: a constant, a yearly and daily frequency – 

allows a very simple model of building to be developed.  This approach can allow building designers rapid insight 

into the performance of various materials and designs and in addition enhance their understanding of the 

fundamental physical processes involved. 
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1. Introduction 

The analysis of heat flowing in and out of a building can be carried out in a number of ways.  Starting with simple 

steady state analysis and utilizing the thermal resistance of building elements (or their inverse, U-values) – steady 

state calculations allow some insight into the thermal performance of a building design.  However once time varying 

external temperatures, solar radiation and building elements with thermal capacitance need to be analyzed most 

researchers and practitioners utilize a sophisticated, modern computer based thermal analysis program to tackle the 

problem.  Of course this latter approach has been shown to be accurate in calculating a wide range of heat transfer 

processes that are complex and necessary in designing buildings.  However it seems that there is little understanding 

of the middle ground between these two cases of a simple steady state calculation and a complex, thermal computer 

based program.  As such inexperienced designers, practitioners and researchers are often at the mercy of accepting 

whatever results a complex thermal program produces.  On the other hand those with many years’ experience may 

have a better physical “feel” for these complex calculations and be able to avoid situations where there are errors in 

the results they are obtaining perhaps due to errors in their input parameters or if there is an error in the program 

itself.    

This paper seeks to revisit techniques for the analysis of periodic and time varying heat flows that were in vogue 

before complex computer calculations took over the field.  The admittance approach was strongly advanced by 

researchers predominantly in the UK, such as Milbank and Harrington [1], Davies [2], as well as Athienitis and 

Santamouris [3], and Muncey [4].  It is not the intent of this paper to develop yet another approach to try and 

compete with existing complex thermal programs. Instead this paper seeks to elucidate and explore the admittance 

method of analyzing periodic heat flow in order to yield greater insight or “feel” for how time-varying heat flows 

actually occur through building elements for simplified cases.   

1.1. Periodic solution of the heat equation  

To analyse periodic heat flow in a building involves analysing the response of the building envelope to sinusoidal 

temperatures or irradiances.  Due to Fourier’s theory – any time varying function can be represented by a summation 

of different frequency cosine and sine waves [3]. Hence, any time varying temperatures, solar irradiance, 

mechanical heating or cooling, or any other heat flow can be analysed.  .  It is useful to define for any temperature, T 

as being equal to the sum of the steady state temperature, 𝑇̅ and the periodic component 𝑇̃.  That is, 𝑇 = 𝑇̅ + 𝑇̅̃.  

Similarly for heat flows, 𝑄̇ = 𝑄̅̇ + 𝑄̃̇.   

Consider now a uniform wall of thickness L, density , thermal conductivity k and specific heat capacity cp.  The 

periodic solution of the heat equation [5] as a function of distance x and time t, for the periodic temperature inside 

the wall 𝑇̃(𝑥, 𝑡) is the real part of: 

𝑇̃(𝑥, 𝑡) = 𝑇̃𝑜(𝑡)
𝑐𝑜𝑠ℎ(𝛾(𝐿−𝑥))+

ℎ𝑖
𝑘𝛾

𝑠𝑖𝑛ℎ(𝛾(𝐿−𝑥))

(1+
ℎ𝑖
ℎ𝑜

) 𝑐𝑜𝑠ℎ(𝛾𝐿)+(
ℎ𝑖
𝑘𝛾

+
𝑘𝛾

ℎ𝑜
) 𝑠𝑖𝑛ℎ(𝛾𝐿)

,   (1) 

where 𝑇̃𝑜(𝑡) is the sinusoidal, outside temperature (|𝑇𝑜|𝑒𝑗𝜔𝑡), |𝑇𝑜| is the amplitude of the outside temperature, and 

the inside temperature 𝑇̃𝑖 is set to zero.  The terms hi and ho are the convection heat transfer coefficients at the inside 

and outside surface of the wall respectively, and  is given by:   

𝛾 =  √
𝜔𝜌𝑐𝑝

2𝑘
(1 + 𝑗),   (2) 

where 𝜔 is the angular frequency of the outside temperature (and is related to the period, P of the oscillation by the 

equation 𝑃 = 2𝜋 𝜔⁄ ), 𝑗 =  √−1, and hence  is a complex quantity. Another useful quantity to define is the effective 

thickness, 𝛿 [5]: 

𝛿 = √2𝑘 𝜔𝜌𝑐𝑝⁄ .   (3) 
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Shown in Fig. 1 is the variation of the periodic temperature inside a 600 mm thick concrete wall for various times 

and for periods of (a) 24 h and (b) 8760 h in response to a 4 degree amplitude, sinusoidal, outside temperature 

variation.  The parameters are: L = 600 mm,  = 1900 kg/m3, thermal conductivity k = 1.1 W/m.K, specific heat 

capacity cp, = 1000 J/kgK, hi = 7.7 W/m2K and ho = 25 W/m2K (as per [8]).  The outside surface of the wall occurs at 

x = 0. Note the damped, sinusoidal variation of the temperature profile for the 24 hour case (Fig. 1a).  This occurs 

due to the charging and discharging of the thermal capacitance of the wall in response to the periodic temperature 

oscillation.  For typical thicknesses of a concrete wall (say 100 – 200 mm thick) the temperature oscillation is still 

quite significant in comparison to the external temperature oscillation.  For infinitely thick walls the temperature 

variation stays within an envelope that decays with distance proportional to: exp(-x/).  For the wall shown in Fig. 

1(a), the effective thickness  = 0.13 m.  Note that after a distance of 3, the temperature oscillations inside the wall 

are significantly damped.  However for a yearly period the temperature profile in the wall is essentially linear (Fig. 

1(b)).  That is, the wall responds to a yearly periodic temperature source in the same way as it would for a steady 

state temperature difference across a wall.  This is because for a period of a year (8760 h) the effective distance  is 

2.4 m.   

 

Fig. 1.  Temperature inside a wall as a function of distance and time for a) a 24 hour period and b) a yearly period. Different curves correspond to 

a specific time as indicated by the legend a) 1,4,6..21 hours and b) 200, 1295,… 7865 hours.     

1.2. Transfer and self-admittance 

From the above periodic solution, the heat transfer characteristics of a building element of area A can be 

characterized using a two port analysis – borrowed from the analysis of electrical circuits (see for example Carslaw 

and Jaeger [6], and Athienitis and Santamouris [3]). 

[
𝑇̃𝑤𝑜

𝑄̃̇𝑜

] = [
𝑐𝑜𝑠ℎ(𝛾𝐿)

𝑠𝑖𝑛ℎ(𝛾𝐿)

𝐴𝑘𝛾

𝐴𝑘𝛾 𝑠𝑖𝑛ℎ(𝛾𝐿) 𝑐𝑜𝑠ℎ(𝛾𝐿)
] [

𝑇̃𝑤𝑖

𝑄̃̇𝑖

]   (4) 

where 𝑇̃𝑤𝑜 and 𝑇̃𝑤𝑖 are the periodic temperatures at the outside and inside surface of the wall and 𝑄̃̇𝑜 and 𝑄̃̇𝑖 are the 

rates of heat flow at the outside and inside wall surface respectively. 

The matrix form of Eqn. 3 means that walls or elements with multiple layers can be easily described using a 

matrix for each layer. By multiplying the matrices together, this yields a single 2 x 2 matrix to describe the complete 

response of all the layers of materials [6,7,8].  Thermal resistances at external surfaces Rs are also represented by a 

suitable matrix.  Hence for a wall with external, Rso and internal Rsi thermal resistances associated with convection 

heat transfer, the appropriate matrix equation can be written as: 
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[
𝑇̃𝑜

𝑞̃̇𝑜

] = [
1 𝑅𝑠𝑜

0 1
] [

𝑐𝑜𝑠ℎ(𝛾𝐿) 𝑠𝑖𝑛ℎ(𝛾𝐿) 𝑘𝛾⁄

𝑘𝛾𝑠𝑖𝑛ℎ(𝛾𝐿) 𝑐𝑜𝑠ℎ(𝛾𝐿)
] [

1 𝑅𝑠𝑖

0 1
] [

𝑇̃𝑖

𝑞̃̇𝑖

] = [
𝑀1 𝑀2

𝑀3 𝑀4
] [

𝑇̃𝑖

𝑞̃̇𝑖

]   (5) 

where 𝑇̃𝑜and 𝑇̃𝑖  are the outside and inside temperatures respectively and 𝑞̃̇𝑜 and 𝑞̃̇𝑖 are the rate of heat flow per unit 

area at the appropriate surface of the wall and M is a 2 x 2 matrix that describes the complete response of the wall 

system including surface resistances (in agreement with [3,6,7,8] with slight sign differences only due to different 

definitions of the direction of positive heat flow).  The direction of positive heat flow, for this two port description 

of the wall, is shown in Fig. 2. 

 

 

 

 

 

Fig. 2. A two port representation of the periodic heat transfer associated with a wall. 

To fully analyze periodic heat flows 𝑞̃̇ it is useful to consider two cases. The first is to consider heat flows due to 

𝑇̃𝑜  with 𝑇̃𝑖  = 0.  For this case it is useful to define  𝑞̃̇𝑖𝑛 = 𝑞̃̇𝑖 . Then the transfer admittance 𝑌𝑡  is defined by the 

equation [3, 8]: 

𝑞̃̇𝑖𝑛 = 𝑌𝑡𝑇̃𝑜   (6) 

That is, 𝑌𝑡 is the admittance that determines  𝑞̃̇in, the periodic heat flow per unit area at the internal surface of a 

wall due to an external periodic temperature variation 𝑇̃𝑜 with 𝑇̃𝑖 = 0.  Note that positive values of 𝑞̃̇in correspond to 

heat flowing from the internal wall surface into the internal temperature node.  

The second case considers heat flows due to 𝑇̃𝑖  with 𝑇̃𝑜 = 0.  For this case it is useful to define, 𝑞̃̇𝑜𝑢𝑡 = −𝑞̇̃̇𝑖. Then 

the self-admittance Ys is defined by [3, 8]: 

𝑞̃̇𝑜𝑢𝑡 = 𝑌𝑠𝑇̃𝑖   (7) 

That is 𝑌s is the admittance that determines  𝑞̃̇out, the periodic heat flow per unit area at the internal surface of a 

wall due to an internal periodic temperature variation 𝑇̃𝑖  with 𝑇̃𝑜 = 0. Note that positive values of 𝑞̃̇𝑜𝑢𝑡 correspond to 

heat flowing out from the internal temperature node and into the internal wall surface. 

The literature is not often explicit in explaining exactly why 𝑌s and 𝑌t are defined in terms of the heat flow due to 

one temperature source whilst the other is zeroed.  However it is a standard approach for analyzing electrical circuits 

utilizing the superposition theorem [9] and this issue will be discussed more fully below. Note that 𝑌𝑡 and 𝑌𝑠 are 

complex quantities (with magnitude and phase) and can be derived from Eqn. 5 in terms of the elements of the 

matrix M which gives in the general case: 𝑌𝑡 = 1 𝑀2⁄  and 𝑌𝑠 = 𝑀1 𝑀2⁄ .    Explicitly, from Eqn. 5, for a wall of a 

single material with surface thermal resistances then: 

 𝑌𝑡 = [(𝑅𝑠𝑜 + 𝑅𝑠𝑖)𝑐𝑜𝑠ℎ(𝛾𝐿) + 𝑠𝑖𝑛ℎ(𝛾𝐿) 𝑘𝛾⁄ + 𝑅𝑠𝑜𝑅𝑠𝑖𝑐𝑜𝑠ℎ(𝛾𝐿)]−1  (8) 

𝑌𝑠 =
𝑐𝑜𝑠ℎ(𝛾𝐿)+𝑅𝑠𝑜𝑠𝑖𝑛ℎ(𝛾𝐿) 𝑘𝛾⁄

(𝑅𝑠𝑜+𝑅𝑠𝑖)𝑐𝑜𝑠ℎ(𝛾𝐿)+𝑠𝑖𝑛ℎ(𝛾𝐿) 𝑘𝛾⁄ +𝑅𝑠𝑜𝑅𝑠𝑖𝑐𝑜𝑠ℎ(𝛾𝐿)
   (9) 

Note that for the case where 𝑅so = 𝑅si = 0 then 𝑌𝑠 = 𝑘γcoth(γ𝐿).  For the case where 𝑅so → ∞  and 𝑅si = 0 then 

𝑌𝑠 = 𝑘γtanh(γ𝐿).  As γ is a function of the periodic angular frequency via Eqn. 2, then the admittances need to be 

computed for every frequency considered for any calculation. 

𝑇̃𝑜 𝑇̃𝑖 

𝑞̃̇𝑜 𝑞̃̇𝑖 



 A. B Sproul  / Procedia Engineering 00 (2017) 000–000 5 

1.3. Superposition 

Superposition allows the calculation of heat flows for any thermal (or electrical) circuit.  For a circuit such as Fig. 

2 – with heat flows due to two time varying periodic temperatures 𝑇̃𝑜 and 𝑇̃𝑖 , the superposition principle states that 

the net heat flow 𝑞̃̇𝑖 is the sum of 𝑞̃̇𝑜𝑢𝑡 and 𝑞̃̇𝑖𝑛.  That is the sum of the heat flows which occur when considering the 

flow of heat 𝑞̇̃̇𝑖 due to only one temperature source at a time while the other is set to zero [9]. Hence, as 𝑞̃̇𝑖𝑛 and 𝑞̃̇𝑜𝑢𝑡 

have opposite signs, the net heat flow is: 

𝑞̃̇𝑖 = 𝑞̃̇𝑖𝑛 − 𝑞̃̇𝑜𝑢𝑡 = 𝑌𝑡𝑇̃𝑜 − 𝑌𝑠𝑇̃𝑖.   (10) 

To better understand superposition and the usefulness of this approach, it is worthwhile at this point to explore 

the steady state case.  As will be shown below, for the steady state case: 𝑌t =  𝑌s = U, where U is the steady state U-

value (i.e. steady state thermal conductance) for the wall and U = 1/R, where R is the corresponding steady state 

thermal resistance of the wall (including the convection surface resistances) [10].  Utilizing the superposition 

approach for the steady state case, the net heat flow 𝑞̅̇𝑖 is now the sum of 𝑞̅̇𝑖𝑛 =  𝑈𝑇̅o and 𝑞̅̇𝑜𝑢𝑡 = 𝑈𝑇̅i and hence: 

𝑞̅̇𝑖 = 𝑈(𝑇̅𝑜 − 𝑇̅𝑖) = (𝑇̅𝑜 − 𝑇̅𝑖) 𝑅⁄    (11) 

(noting that 𝑞̅̇𝑜𝑢𝑡 and 𝑞̅̇𝑖𝑛 have opposite signs). Clearly this is the expected result for the steady state case - a result 

usually obtained utilizing the thermal equivalent of Ohms law [10].  However it further demonstrates the usefulness 

of the superposition approach in determining heat flows, especially when considering the more complex case of 

periodic heat flows as described by Eqn. 10. 

1.4. Transfer and self-admittance for typical building materials 

Shown in Fig. 3 are the magnitudes of the transfer and self-admittance values of some typical building materials 

as a function of the period in days.  Surface resistance values of Rso = 0.04 m2K/W and Rsi = 0.13 m2K/W were used 

in the calculations as well as the thermal properties given in Table 1.  The two vertical dashed lines in Fig. 3 

correspond to yearly and daily periods.  Note that for all materials the yearly values of |𝑌𝑡| and |𝑌𝑠| are equal to each 

other and also to the total U-value (i.e., including the surface resistances).  That is, the yearly periodic response of 

the materials is the same as the steady state case.  This is also true for the glass and insulation for a daily period.  

However for the brick wall for a daily period, |𝑌𝑡| has decreased while |𝑌𝑠| has increased from the steady state value.  

At very short periods, for all materials |𝑌𝑡| tends towards zero whilst |𝑌𝑠| tends towards a value of 1/𝑅si  (7.7 

W/m2.K).  That is all materials for low periods (high frequency) act as a short circuit and |𝑌𝑠|  →  1/𝑅si .  That is the 

internal surface resistance is the only impedance to heat flow (in response to 𝑇̃𝑖 with 𝑇̃𝑜= 0). 

Table 1. Properties of building materials used for calculations for Fig. 3 [10]. 

Property Brick Insulation 

(Expanded polyurethane) 

Glass 

Thickness, L    m 0.2 0.1 0.003 

Density,     kg/m3 1920 24 2220 

Thermal conductivity, k    W/m.K 0.90 0.023 1.38 

Specific heat cp    J/kg.K   790 1600 708 

R-value (material only)    m2.K/W 0.11 4.35 0.0022 

 

The above observations are useful in providing a better general understanding of periodic heat flow through 

building materials.  Thin or lightweight materials such as glass and insulation have heat transfer properties which 

can, to a fairly good approximation, be described utilising their steady state U value for steady state, yearly and daily 

periods.  For heavier weight materials such as bricks and concrete, the daily thermal response requires a detailed 

calculation of admittances, however U-values are sufficient to describe the yearly response. 
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As such it is useful to examine a building’s thermal response to a simplified external temperature that is made up 

of only three Fourier components, that is a constant, a yearly and a daily period.  Shown in Table 2 are the 

admittances for two walls which from the outside surface consists of 100 mm of insulation (expanded polyurethane) 

and either 100 mm or 200 mm of brick.  The “lag” is also given for 𝑌t and  𝑌s (i.e., the time difference between the 

peak of the periodic excitation temperature and the peak of the heat flow [3,8]).  The other thermal properties are 

given in Table 1.  Note that the admittances are the daily values and that the yearly values are not given as they are 

identical to the steady state U-value.    

For both walls, the addition of insulation to the brick wall significantly improves the U-value of the wall in 

comparison to the brick only wall (see Fig. 3).  Note that for the thicker wall, the additional 100 mm of brick only 

marginally improves the U-value of the wall, however the daily transfer admittance is significantly reduced and the 

daily self-admittance decreases only slightly.  Some researchers and designers would advocate wall thicknesses that 

maximize 𝑌𝑠 (see for example [3]), however the benefit of decreasing 𝑌𝑡 should also be considered.   

It is useful to consider the thermal response of both walls for a simple case with 𝑇̃𝑖 = 0 (i.e., 𝑇𝑖  is constant as 

would be essentially the case for an air-conditioned room).  Consider an outside temperature with a constant value 

of 18oC, plus a yearly and daily frequency component with angular frequencies of 𝜔𝑦 and 𝜔𝑑 respectively both with 

an amplitude of 5oC.  Hence 𝑇𝑜 is given by: 

𝑇𝑜 = 18 + 5𝑐𝑜𝑠(𝜔𝑦𝑡) + 5𝑐𝑜𝑠(𝜔𝑑𝑡)   (12) 

 
Fig. 3.  Magnitude of the transfer admittance (black curves) and self-admittance (red-curves) for  

different building materials as a function of the period. 

Table 2. Heat transfer properties for two composite walls.  Admittance values are for P = 24 h.  

Wall description U value 

(W/m2.K) 

|𝑌𝑡| 
(W/m2.K) 

 𝑌𝑡 Lag 

(hours) 

|𝑌𝑠| 
(W/m2.K) 

 𝑌𝑠 Lag 

(hours) 

Wall # 1: 100 mm insulation /  

100 mm brick 

0.22 0.10 -5.6 5.18 +1.9 

Wall #2: 100 mm insulation /  

200 mm brick 

0.21 0.04 -8.5 4.86 +1.2 

 

Considering only the constant and yearly terms then the maximum (i.e. summer) and minimum (i.e. winter) 

values are 23oC and 13oC.  These temperatures are approximately the daily average temperatures for Sydney in 

December and July respectively.  In addition typical daily temperature swings in Sydney have an amplitude of 5oC 

giving typical daily summer maximums and minimums of 28oC and 18oC respectively.  In winter typical daily 

maximums and minimums are 18oC and 8oC respectively [11].  Shown in Table 3 are the steady state heat flows for 

a constant outside temperature of 23oC (summer) and 13oC (winter), as well as the amplitude of the daily periodic 

heat flows for the two composite walls (area 140 m2 and thermal properties from Table 2) and two glazing options 

3 mm glass 

 

200 mm brick 

 

 

 

100 mm insulation 
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with an area of 40 m2.  Calculations were carried out with a fixed indoor temperature of 𝑇𝑖 = 22oC and utilizing 

Eqns. 10 and 11. 

For these two walls under typical outdoor temperatures for Sydney the steady state heat flows are greatest in 

winter (due to the greater temperature difference between inside and outside) however all heat flow values are 

relatively small for 140 m2 of wall.  For the thicker wall (#1) – the daily heat flow amplitude is almost negligible.     

In comparison for the 40 m2 of glazing, the single glazed windows have significant heat flows whilst double glazed 

windows have heat flows closer to those of the walls.   

 

Table 3. Steady state heat flow and amplitude of daily periodic heat flows for two composite walls of area 140 m2  

(properties from Table 2) and two glazing options with an area of 40 m2.  

Element Season 𝑄̅̇𝑖  

(W) 

|𝑄̃̇𝑖|  

(W) 

Element Season 𝑄̅̇𝑖  

(W) 

|𝑄̃̇𝑖|  

(W) 

Wall #1 Winter -272 72 Single glazing  Winter -2160 1200 

 Summer +31 72 (U = 6 W/m2K) Summer +240 1200 

Wall #2 Winter -266 30 Double glazing #2 Winter -540 300 

 Summer +29 30 (U = 1.5 W/m2K) Summer +60 300 

1.5. Indoor temperature for a room with different wall to window ratios 

Utilising the admittance approach it is straight forward to calculate the free running internal temperature of a 

room.  This will be illustrated in this section for a simple case, considering only heat flow through the walls and 

glazing of a single room and considering the impact of the outdoor temperature only i.e., walls and glazing shaded.  

In this case the net heat flows into the indoor temperature node are given by:   

(𝐴𝑤𝑇𝑜𝑌𝑡𝑤 − 𝐴𝑤𝑇𝑖𝑌𝑠𝑤) + (𝐴𝑔𝑇𝑜𝑌𝑡𝑔 − 𝐴𝑔𝑇𝑖𝑌𝑠𝑔) = 0  (13) 

where the first term in brackets represents the net heat flow through the walls and the second term in brackets 

represents the net heat flow through the glazing.  Conservation of energy requires that the sum of all heat flows 

through a node must be zero (the thermal equivalent of “Kirchhoff’s current rule” [9]). 

Re-arranging for 𝑇𝑖  gives: 

𝑇𝑖 = 𝑇𝑜  (
𝐴𝑤𝑌𝑡𝑤+𝐴𝑔𝑌𝑡𝑔

𝐴𝑤𝑌𝑠𝑤+𝐴𝑔𝑌𝑠𝑔
)   (14) 

For the steady state case, as all admittances are equal to their corresponding U-values, then the term in brackets is 

unity and the steady state indoor temperature is simply given by 𝑇̅𝑖 = 𝑇̅𝑜.  This is a useful result: in the absence of 

solar or internal gains to a room the average indoor temperature will be equal to the average outdoor temperature. 

Adding the daily periodic case, Fig. 4 shows the indoor temperate 𝑇𝑖  as a function of the window to wall ratio 

(WWR) for ratios ranging from 0 to 90%.  The outdoor temperature is also plotted with an average value of 13oC 

and a daily amplitude of 5oC.  The thermal properties of the wall are those reported in Table 2 (wall #2) and the 

windows have a U-value of 6 W/m2.K (and for the windows:  𝑈 = 𝑌𝑡 = 𝑌𝑠, for the yearly and daily Fourier 

components).  

Note that the indoor temperature lag and amplitude decrement are strongly dependent on the window to wall 

ratio.  For a room with a WWR = 0 the indoor temperature is strongly damped and is essentially the average of the 

outdoor temperature (13oC).  Note that it has a temperature lag of -7.5 hours (i.e. the peak of 𝑇̃𝑖 occurs 7.5 hours 

after the peak of  𝑇̃𝑜).  For a WWR = 0, then 𝑇̃𝑖 = 𝑇̃𝑜(𝑌𝑡𝑤 𝑌𝑠𝑤⁄ ) and the ratio of the admittances has a lag of -7.5 

hours.  For a WWR = 20% the lag is -1.8 hours.  Note from Table 2, that the lag associated with 𝑌𝑡 is -5.6 hours.  

Often lag is discussed in the literature and the focus is on lag associated with Yt.  However as discussed above 

temperature lags in a building require an understanding of Ys as well as Yt and very importantly, the WWR.  As 

glazing transfers significant heat in and out of a building with essentially zero lag in response to daily outdoor 
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temperature swings, the WWR has a significant impact on indoor temperature amplitude and lag.   

 

 
 Fig. 4.  Indoor temperature for a room with varying window to wall ratio (0% – 90%). 

 

2. Calculation of the periodic internal temperature of a building using admittances 

Shown in Fig. 5 is a circuit representation of a building that will be used to demonstrate the admittance approach 

more fully. The various elements of a building (walls, windows, floors etc.) can be represented using complex 

thermal impedances, Z, which are the periodic equivalent of a thermal resistance.  For simplicity two impedances are 

shown to graphically illustrate i) the opaque elements, Zopaque and ii) the glazed elements of the building, Zglazing.  The 

admittance Y of each element is simply the inverse of the thermal impedance. Infiltration is modeled using a thermal 

impedance, Zinfil.  Other periodic heat sources such as solar gains through the glazing, Q̇solar and internal gains, Q̇𝑖𝑛𝑡 

are also included.  The air inside a building is modeled as a single thermal capacitor, Cair.  Two periodic external 

temperature sources are shown.  The sol-air temperature source Tsa represents the Thevenin equivalent temperature 

associated with the external ambient temperature and the incident solar radiation on opaque elements of a building 

[2, 12].  The outdoor air temperature To is connected to the thermal impedances associated with the windows and 

infiltration.  Note that Fig. 5 allows the analysis of both the steady state and periodic cases. 

Firstly the periodic case will be examined.  Using the superposition principle, as described previously, allows 

very simple expressions to be derived for  𝑇̃𝑖. Heat flows through the internal temperature node will be considered, 

as before for two cases: 1) heat flowing out of the node due to the indoor temperature 𝑇̃𝑖   with all other independent 

sources set to zero and 2) heat flowing into the node due to all the other sources with 𝑇̃𝑖   set to zero.   

For the first case, the heat flow 𝑄̃̇𝑜𝑢𝑡 due to the periodic indoor temperature 𝑇̃𝑖  with all other temperature and heat 

sources set to zero is: 

𝑄̃̇𝑜𝑢𝑡 = 𝑇̃𝑖(∑ 𝐴𝑘𝑌𝑠𝑘𝑘 + 𝐶𝑖𝑛𝑓𝑖𝑙 + 𝑌𝑎𝑖𝑟)   (15) 

The first term in the equation is a sum of heat flows at the internal surfaces of all the building elements such as 

walls, glazing, ceiling and floor with area 𝐴𝑘  and self-admittance 𝑌𝑠𝑘 .  The second term is heat flow due to 

infiltration (with thermal conductance of Cinfil = 1/3NachV) [8] and the final term is heat flow associated with the 

room air with admittance 𝑌𝑎𝑖𝑟 = 𝑗𝜔𝐶𝑎𝑖𝑟𝑉, where Nach is the number of air changes per hour, V is the volume of the 

building or zone, and 𝐶𝑎𝑖𝑟  is the volumetric heat capacity of the air [J/m3K]. 

Similarly for the second case, the heat flowQ̃̇in due to all the other sources, with 𝑇̃𝑖 zeroed is: 

𝑄̃̇𝑖𝑛 = 𝑇̃𝑜(∑ 𝐴𝑖𝑌𝑡𝑖𝑖 +𝐶𝑖𝑛𝑓𝑖𝑙) + ∑ 𝑇̃𝑠𝑎𝑗
𝐴𝑗𝑌𝑡𝑗𝑗 + 𝑄̃̇𝑠𝑜𝑙𝑎𝑟 + 𝑄̃̇𝑖𝑛𝑡  (16) 
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The first term is the sum of heat flows at the internal surfaces all of the glazing elements with area 𝐴𝑖  and 

transfer admittance 𝑌𝑡𝑖
, in response to the external air temperature 𝑇̃𝑜 plus the infiltration heat flow. The second term 

is the sum of heat flows at the internal surfaces of all the opaque building elements such as walls, ceiling and floor 

with area 𝐴𝑗  and transfer-admittance 𝑌𝑡𝑗
, in response to the external sol-air temperature 𝑇̃𝑠𝑎𝑗

 incident on the jth 

element.  The last two terms describe the periodic heat gains into the building due to solar gain through glazing, 

Q̃̇solar and internal heat gains, Q̃̇int. 

Superposition can now be used to determine the net rate of heat flow into and out of the internal temperature 

node for the complete thermal circuit (see Fig. 5).   

Fig. 5. A thermal circuit representation of a building. 

That is the total heat flow in and out of the internal temperature node is the sum of heat flows from cases 1 and 2.  

For a single node, using “Kirchhoff’s current rule”, the sum of all heat flowing into and out of the node for all 

pathways must sum to zero [9].  This is a statement of the conservation of energy.  Noting that the heat flows 𝑄̃̇𝑖𝑛 

and 𝑄̃̇𝑜𝑢𝑡 have opposite signs, then  

𝑄̃̇𝑖𝑛 − 𝑄̃̇𝑜𝑢𝑡 = 0   (17) 

  Hence substituting Eqns. 15 and 16 into Eqn. 17 and solving for 𝑇̃𝑖  yields: 

𝑇̃𝑖 =    
𝑇̃𝑜(∑ 𝐴𝑖𝑌𝑡𝑖𝑖 +𝐶𝑖𝑛𝑓𝑖𝑙)+∑ 𝑇̃𝑠𝑎𝑗

𝐴𝑗𝑌𝑡𝑗𝑗 +𝑄̃̇𝑠𝑜𝑙𝑎𝑟+𝑄̃̇𝑖𝑛𝑡 

(∑ 𝐴𝑘𝑌𝑠𝑘𝑘 +𝐶𝑖𝑛𝑓𝑖𝑙+𝑌𝑎𝑖𝑟)
   (18) 

This equation allows the calculation of the free running, periodic, internal temperature of a building.  Inputs 

required are external climate variables (sol-air and air temperatures, and solar gains) and internal gains into the 

building as well as the self and transfer admittances for all elements of the building.  Inputs can be represented using 

Fourier series with sufficient frequency terms to ensure accurate representation of the heat sources (e.g. 

temperatures and internal heat gains). Note that for each frequency in the Fourier series, a corresponding admittance 

value needs to be calculated.  Superposition can then be used to sum all contributions to 𝑇̃𝑖  to calculate the total 

thermal response. 

3. Average value of the indoor temperature 

A similar analysis can be used to yield the average indoor temperature 𝑇̅𝑖.  Essentially the circuit is analysed for 

the “constant” plus the yearly frequency component of the Fourier series representation.  Hence in this case, 

admittance values – both self and transfer admittance, will tend towards the U value for the building element.  In 

addition the admittance of the air will be essentially zero.  Hence: 
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𝑇̅𝑖 =    
𝑇̅𝑜(∑ 𝐴𝑖𝑈𝑖𝑖 +𝐶𝑖𝑛𝑓𝑖𝑙)+∑ 𝑇̅𝑠𝑎𝑗

𝐴𝑗𝑈𝑗𝑗 +𝑄̅̇𝑠𝑜𝑙𝑎𝑟+𝑄̅̇𝑖𝑛𝑡 

(∑ 𝐴𝑘𝑈𝑘𝑘 +𝐶𝑖𝑛𝑓𝑖𝑙)
   (19) 

If we ignore for simplicity the additional sol-air temperature (e.g. shaded opaque elements) then the sol-air 

temperatures are essentially equal to the outside air temperatures and so we can solve for 𝑇̅𝑖  to yield: 

  𝑇̅𝑖 = 𝑇̅𝑜 +
𝑄̅̇𝑠𝑜𝑙𝑎𝑟+𝑄̅̇𝑖𝑛𝑡

(∑ 𝐴𝑘𝑈𝑘𝑘 +𝐶𝑖𝑛𝑓𝑖𝑙)
   (20) 

(Note that ∑ 𝐴𝑘𝑈𝑘𝑘 =  ∑ 𝐴𝑖𝑈𝑖𝑖 + ∑ 𝐴𝑗𝑈𝑗𝑗  ).  Hence Eqn. 20 describes a free running building and for the case of 

shaded external opaque elements, the average internal temperature will be equal to the average ambient temperature 

plus an additional temperature rise due to solar and internal heat gains. 

In summer a building described by Eqn. 20 will potentially be comfortable provided the average ambient 

temperature is within the comfort zone and solar and internal heat gains are minimised.  For a well-insulated 

building (low U- value) – the internal temperature will increase if solar or internal gains are too high.  In this case 

greater ventilation will keep temperatures lower – but again this will only be comfortable if the average outdoor 

temperature is within a comfortable range.  If too warm – then night ventilation would be best. 

In winter for climates outside the tropics, the average outdoor temperature will be lower than a comfortable 

temperature range.  Hence best to maximise the solar heat gain, have low U value construction, minimise the surface 

area and minimise infiltration to increase 𝑇̅𝑖 above 𝑇̅𝑜. 

 

4. Indoor temperature – free running building with solar gain 

Shown in Fig. 6 is the calculated indoor temperature for a building in a) winter with solar gain through a 

Northern window and b) summer assuming zero solar gains (i.e., all windows are externally shaded) .  A limited 

number of inputs are required for such a model and will be given below.  The building is located in Sydney (latitude 

34oS), and the dates considered are July 21st and Dec 21st. The building is rectangular with a floor area of 

20 m x 10 m, with the long side facing North and the ceiling height is 3 m.  The walls have thermal properties given 

in Table 2 and wall #2 is utilised.  For simplicity the roof and floor are considered massless and have an R value of 5 

m2K/W.  The infiltration rate is Nach = 0.1 ACH and the average internal gains = 1 W/m2.  The glazing has a U-value 

= 1.5 W/m2.K and SHGC = 0.7.  The WWR is 26% for the North facing wall, and 20% for all other walls.  Solar 

insolation is assumed to occur only on the Northern windows with a value of 4.6 kWh/m2 per day (clear sky model 

[13]).  For Fig. 6(a), the average outside temperature is  𝑇̅𝑜 = 13oC corresponding to July in Sydney with a 5 degree 

daily amplitude.  For Fig. 6(b), 𝑇̅𝑜 = 23oC corresponding to Decmeber in Sydney with a 5 degree daily amplitude.    

For the parameters given above the building has 𝑇̅𝑖 = 20.5oC with a temperature swing of 2.1oC in winter.  For a 

residential building in Sydney in winter this would be a comfortable indoor temperature range.  Similarly for 

summer, then 𝑇̅𝑖 = 24.1oC with a swing of only 0.9oC.  Again this would be a comfortable temperature range in 

Sydney in the summer.  The important point here is that the average indoor temperature calculation using Eqn. 20 is 

a relatively simple, steady state calculation; however it provides significant insight in to the thermal performance of 

a building.  To illustrate this, the thermal gains and building fabric gains and losses over 24 hours are shown in 

Table 4. 

Table 4. Thermal gains and building fabric gains/losses (kWh) over 24 hours.  

Season Solar 

gains 

Internal 

gains 

Walls Glazing Ceiling Floor Infiltration 

Winter 29.2 4.8 -5.3 -10.6 -7.2 -7.2 -3.6 

Summer 0 4.8 0.8 1.5 1.0 1.0 0.5 
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Fig. 6.  Indoor and outdoor temperatures for a free running building for a typical day in Sydney a) winter and b) summer. 

5. Conclusions 

This paper has presented an overview and exploration of the admittance approach for describing periodic heat 

flow through building elements. The admittance model used here is quite simple to program and was implemented 

in Excel.  The simplified model allows many “what if” questions to be asked quickly and easily as there are very 

few input parameters, yet they capture the essential fundamentals required to describe a building.  However the 

important point to note from the results presented here is that valuable insight into the performance of a building can 

be determined from steady state calculations.  If further insight of the periodic components of temperature or heat 

flow is required, the admittance method allows good insight to be gained.  Of course there are a number of 

simplifications made in this approach.  For example internal radiation exchanges inside the building are greatly 

simplified.  However the approach presented here allows researchers and practitioners to gain a far better feeling and 

understanding of periodic heat flows in a building. 
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